Towards Structural Consistency Checking
in Adaptive Case Management

Christoph Czepa!, Huy Tran', Uwe Zdun®,
Thanh Tran Thi Kim?, Erhard Weiss?, and Christoph Ruhsam?

! Research Group Software Architecture, University of Vienna, Austria
{christoph.czepa,huy.tran,uwe.zdun}@univie.ac.at
2 Isis Papyrus Europe AG, Maria Enzersdorf, Austria
{thanh. tran, erhard.weiss, christoph.ruhsam}@isis-papyrus.com

Abstract. This paper proposes structural consistency checking for Adaptive Case
Management (ACM). Structures such as a hierarchical organization of business
goals and dependencies among tasks are either created at design time or evolve
over time while working on cases. In this paper, we identify structures specific
to current ACM systems (as opposed to other BPM systems), discuss which in-
consistencies can occur, and outline how to discover these issues through model
checking and graph algorithms.

Keywords: Verification, Model Checking, Adaptive Case Management

1 Introduction

In contrast to classical Business Process Management (BPM) which mainly utilizes pre-
defined, rigid business processes, processes in knowledge-intensive domains (e.g., med-
ical care, customer support, contract management) tend to be rather unpredictable and
shall, therefore, be handled in a more flexible manner. Flexibility and structuredness,
however, do not necessarily contradict each other since structures can remain adaptable
even at runtime. Adaptive Case Management (ACM) combines classical structural fea-
tures such as process flows with new structures such as dependencies among tasks and
business goal hierarchies [5, 10, 13]. A high degree of flexibility increases the chance
for potential errors or inconsistencies. For example, a new goal could be in conflict with
an existing goal or a new dependency among two tasks could result in contradicting pre-
and postconditions of these tasks.

In this paper, we illustrate exemplary structures that can be found in today’s ACM
solutions. Our study is based on our work with ISIS Papyrus, a state-of-the-art com-
mercial ACM solution, several customer applications realized in Papyrus, our analy-
sis of other solutions, and the Case Management Model and Notation (CMMN) stan-
dard [6, 9, 10]. We discuss potential inconsistencies that can occur in such structures.
Verification of classical process definitions has been discussed by a plethora of stud-
ies [1,3,4,7,8, 11, 12, 15], but we are not aware of any prior study related to structural
consistency checking in the domain of ACM. We are working towards bridging this
research gap.

2 Identification of Structures and Discussion of Inconsistencies

In this section, we illustrate structures that can be found in today’s ACM solutions and
discuss which inconsistencies can possibly occur in these structures. For the sake of
illustration, we make use of the open CMMN standard [10] instead of proposing a new
or using a vendor-specific proprietary notation for the discussion of recurring structures
in ACM and their inconsistencies. Please note that the focus is clearly on the structural
concepts of ACM, not on a specific notation.

2.1 Goal Hierarchies

A goal defines what a knowledge worker has to achieve and thus, is directly linked to
operational business targets and strategic objectives. Goals of a case can be structured
hierarchically [5, 13]. On top of the hierarchy stands the main goal of a case which can
be broken down into subgoals. Naturally, we would not want to pursue contradictory
goals simultaneously. Therefore, consistency checks that reveal contradicting comple-
tion criteria of potentially simultaneously pursued goals would be helpful in the design
of ACM cases.

Example 1. In the goal hierarchy depicted in Figure 1, a knowledge worker can work
towards Subgoal I and Subgoal 2 or Subgoal 1.1 and Subgoal 2 at the same time, so
their completion criteria must not be contradictory.

< Subgoal 1 > < Subgoal 2 >

Subgoal 1.1

Fig. 1. Goal Hierarchy Example

2.2 Structured Subprocesses

Structured subprocesses are regularly used in ACM solutions for standard procedures
that usually do not require frequent human intervention. In principle, for such structured
subprocesses regular BPM verification approaches can be used (e.g., [4]). However, the
ACM task templates often already come with internal pre- and post-conditions which
then become part of the process model. As a result, existing techniques for the verifi-
cation of business processes must be slightly adapted for flow-based subprocesses in
ACM to cover such additional elements.

2.3 Structures of Interdependent Criteria in the Case Structure

Starting to work on a case or the completion of a task usually leads to one or more
other elements of the case to become accessed, depending on whether criteria along
the way to such an element can be satisfied altogether. Every element of the case must
be accessible. When an element is inaccessible due to an unsatisfiable combination of
criteria, it is in any case an inconsistency that must be revealed. If an entry criterion
is assigned to a goal, then it is also called a completion criterion. If an entry criterion
(resp. exit criterion) is assigned to a task, then it is also called a precondition (resp.
postcondition).

Example 2. Figure 2 extends the goal hierarchy presented in Figure 1 with tasks, sub-
processes and substructures. In the following, we analyze for each element what com-
bination of criteria must be satisfiable for its accessibility.

<>

2> Subprocess 1

R4

RS
o0,

o,
",
v,

Subgoal 1 Subgoal 2
%

Substructure 1
Task 1
<
Task
0- () Subgoal 1.1
S1.1 <> Entry Criterion

@ Exit Criterion

- Dependency

Fig. 2. Example Case

The precondition of Task S1.I must not contradict the entry criterion of Substruc-
ture 1 because Task S1.1 is the only task that can be started directly after having gained
access to the substructure. Subgoal 1.1 is only accessible from Task S1.1 if the post-
condition of the task is not contradictory to the completion criterion of the goal. To
complete Subgoal 1, its completion criterion must be consistent with both the postcon-
dition of Task SS1.1 and the completion criterion of Subgoal 1.1. Subgoal 2 is accessible

if the postcondition of Task I does not contradict the completion criterion of Subgoal 2.
The process of Subprocess I can only be started properly if the preconditions of Task
PI1.1 and Task P1.2 are consistent because the are logically and-connected due to the
parallel split gateway (‘process start structure’). Additionally, the structure composed
of the entry criterion of the subprocess and the access structures of both Subgoal 1 and
Subgoal 2 must be satisfiable (‘subprocess access structure’). Consequently, the process
start and subprocess access structure of Subprocess I must also not be contradictory. To
be able to fulfill the Main Goal of the case, the process finish structure composed of
the postconditions of Task P1.1 and Task P1.2 must be consistent with the completion
criterion of the Main Goal.

2.4 Dependency Loops

Dependencies can be arranged so as to create loops. There must be a way to enter this
dependency loop.

Fig. 3. Dependency Loop Example

Example 3. Figure 3 contains an example of a dependency loop. If we remove the sec-
ond entry criterion of Task I (which has no explicit dependency) the loop would lose its
entry point and become inaccessible.

Please note that a dependency loop does not behave like a loop in flow-based busi-
ness process language (e.g., BPMN) because a knowledge worker can decide whether
or not to execute the next task and can, therefore, easily break out.

3 Outline of the Approach

In this section, we outline our approach for structural consistency checking of ACM
case template. Our approach is based on model checking and graph algorithms. Model
checking is used for the checking of goal hierarchies, structures of interdependent cri-
teria and structured subprocesses. Graph algorithms are used for the discovery of loops
and for expressing structures of interdependent criteria.

For the most part, structural consistency checking in ACM can be performed based
on structures of interdependent criteria. This reduces the checking effort drastically
because only parts of the model must be considered when checking for specific errors
in the model. Flow-based subprocesses are the exception because the subprocess must
also be verified as a whole.

E'F pis a Computation Tree Logic operator, and its meaning is that p must be satis-
fiable on at least one subsequent path. Model checking of this formula can be described

VAR
Data#Person#First_Name#String : {Christoph, Christopher, Christian, Huy, Uwe, Thanh};

DEFINE Data#Person#First_Name#String#startsWith#Chr := (Data#Person#First_Name#String =
Christoph) | (Data#Person#First_Name#String = Christian) | (Data#Person#
First_Name#String = Christopher);

DEFINE Data#Person#First_Name#String#startsWith#T := (Data#Person#First_Name#String =
Thanh) ;

CTLSPEC EF Data#Person#First_Name#String#startsWith#Chr & Data#Person#First_Name#String
#startsWith#T

Listing 1.1. NuSMV code

as nondeterministic changes of data values until a fitting solution is found or all possi-
bilities are exhausted. The most atomic checkable item in ACM is a single criterion ¢
which must meet the specification EF(c), followed by two criteria cq and ¢/, that are
related to the same dependency d which must meet the specification EF(cq A cly).

Example 4. Let us assume that both ¢4 and ¢/; are criteria which are related to a string
function ‘starts with’, where c4 demands that the first name of a person must start with
‘T’ and ¢, requires the first name to start with ‘Chr’. Listing 1.1 contains code for
checking the consistency of these two criteria. When we input this code into the model
checker NuSMV [2], it detects that the specification is not satisfiable, so these interde-
pendent criteria are contradicting each other.

For the generation and representation of logical expression trees that represent struc-
tures of interdependent criteria which then can be verified by model checking (general-
ization of Example 4), graph algorithms are leveraged in accordance with the analysis
outlined in Section 2.3. Dependency loops can be discovered as strongly connected
components in a graph representation of the case by Tarjan’s algorithm [14] in linear
time.

4 Related Work

Kherbouche et al. use model checking to find structural errors in BPMN2 models [7].
Eshuis proposes a model checking approach for the verification of UML activity di-
agrams [4]. Van der Aalst created a mapping of EPCs to Petri nets to check whether
there are structural errors such as gateway mismatches [1]. Sbai et al. also use model
checking for the verification of workflow nets (Petri nets representing a workflow) [12].
Raedts et al. propose the transformation of models such as UML activity diagrams and
BPMN2 models to Petri nets for verification with Petri net analyzers [11]. Ciao et al.
transform XPDL structures to Petri nets [15]. Kohler et al. describe a process by means
of an automaton and check this automaton by model checking [8]. El-Saber et al. pro-
vide a formalization of BPMN and propose a verification through model checker [3].
These approaches have been created for flow-based business processes. None of the
existing approaches considers the structural features that are present in Adaptive Case
Management.

5 Conclusion and Future Work

This paper discusses structural consistency checking in the domain of Adaptive Case
Management and proposes the use of model checking and graph algorithms as a poten-
tial solution. We identify several structural features, discuss possible inconsistencies,
and propose preliminary concepts for discovering inconsistencies. Our study is based
on our work with checking cases in ISIS Papyrus, a state-of-the-art ACM commercial
product, as well as our analysis of other solutions and the CMMN standard. In future
work, we intend to elaborate and formalize our checking approach and evaluate its scal-
ability and performance.

Acknowledgements. The research leading to these results has received funding from the FFG
project CACAO, no. 843461 and the Wiener Wissenschafts-, Forschungs- und Technologiefonds
(WWTF), Grant No. ICT12-001.

References

[1] van der Aalst, W.: Formalization and verification of event-driven process chains. Informa-
tion and Software Technology 41(10), 639-650 (1999)

[2] Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: a new Symbolic Model Ver-
ifier. In: 11th Conf. on CAV. pp. 495-499. No. 1633 in LNCS, Springer (July 1999)

[3] El-Saber, N., Boronat, A.: Bpmn formalization and verification using maude. pp. 1-12.
BM-FA *14, ACM, New York, NY, USA (2014)

[4] Eshuis, R.: Symbolic model checking of uml activity diagrams. ACM Trans. Softw. Eng.
Methodol. 15(1), 1-38 (Jan 2006)

[5] Greenwood, D.: Goal-oriented autonomic business process modeling and execution. LNCS,
vol. 5240, pp. 390-393. Springer (2008)

[6] ISIS Papyrus: http://www.isis-papyrus.com, last accessed: July 14, 2015

[7] Kherbouche, O., Ahmad, A., Basson, H.: Using model checking to control the structural
errors in bpmn models. In: 7th Int. Conf. on RCIS. pp. 1-12 (May 2013)

[8] Koehler, J., Tirenni, G., Kumaran, S.: From business process model to consistent imple-
mentation. In: 6th Int. Conf. on EDOC). pp. 96-106 (2002)

[9] Kurz, M., Schmidt, W., Fleischmann, A., Lederer, M.: Leveraging cmmn for acm: Exam-
ining the applicability of a new omg standard for adaptive case management. In: 7th Int.
Conf. on Subject-Oriented BPM. pp. 4:1-4:9. ACM, New York, NY, USA (2015)

[10] OMG: Case Management Model and Notation (CMMN) Version 1.0. http://www.omng.
org/spec/CMMN/1.0/PDF/, last accessed: July 14, 2015

[11] Raedts, 1., Petkovi¢, M., Usenko, Y.S., van der Werf, J.M., Groote, J.F., Somers, L.: Trans-
formation of BPMN models for Behaviour Analysis. In: MSVVEIS. pp. 126-137. INSTICC
(2007)

[12] Sbai, Z., Missaoui, A., Barkaoui, K., Ben Ayed, R.: On the verification of business processes
by model checking techniques. In: 2nd Int. Conf. on ICSTE. vol. 1, pp. 97-103 (Oct 2010)

[13] Stavenko, Y., Kazantsev, N., Gromoff, A.: Business process model reasoning: From work-
flow to case management. In: Conf. on CENTERIS. vol. 9, pp. 806-811 (2013)

[14] Tarjan, R.: Depth first search and linear graph algorithms. SIAM Journal on Computing
(1972)

[15] Xiao, D., Zhang, Q.: The implementation of xpdl workflow verification service based on
saas. In: Int. Conf. on ICSS. pp. 154-158 (May 2010)

