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Abstract— In Adaptive Case Management (ACM) systems, 
knowledge workers have the flexibility to deal with unpredictable 
situations. Compared with a classical BPM approach the 
extensive prescriptive process analysis and definitions are 
replaced by context-sensitive proposals, which is more suited for 
knowledge-intensive work. Thus, it is vital that ACM systems 
support knowledge workers with knowledge captured from 
previous work which can be ambiguous for the system. This 
paper proposes an approach to support knowledge workers 
based on the knowledge previously applied by others in the form 
of a User Trained Agent that learns from ad hoc actions taken by 
knowledge workers to suggest best next actions for the current 
situation. The proposed best next actions are analyzed for 
coherence.
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I. INTRODUCTION

Adaptive Case Management (ACM) systems provide 
knowledge workers with capabilities to handle business cases 
in a flexible way [1, 2, 3]. Besides following the processes 
predefined in the systems for situations typically calling for 
strict workflow needs like sign-off processes, knowledge 
workers are able to decide adequately based on their 
experience and knowledge on which ad hoc actions to conduct 
given the current situation, irrespective of whether predefined 
or not [4]. Currently most ACM systems allow knowledge 
workers to select single ad-hoc actions freely but that action 
will not in any way influence future execution. There is no 
embedded learning mechanism availability towards facilitating 
reuse of such ad hoc actions. ACM systems that provide a user 
created template library are organized into categories but do 
not support the knowledge worker in their decision making at 
certain points in the process [5, 6]. In a specific situation the 
decision is made only based on the knowledge worker’s own 
experience but not from the collective knowledge base 
stemming from all users working with the system. Thus, the 
knowledge “which is only between two ears of a knowledge 
worker” [7] is not available for other knowledge workers in the 
ACM systems.

To overcome that lack of knowledge transfer we propose in 
this paper an approach for capturing knowledge within an 
ACM system and use that base for user recommendations. A 
User Trained Agent (UTA) [8, 9] is built on a pattern 
recognition principle [10]. A pattern represents a collection of 

elements relevant for a decision taken from the scope of a
process or case to solve a particular problem in a certain 
context [11]. The UTA analyzes what elements of a pattern are 
relevant for an ad hoc action. Based on the gathered pattern 
knowledge, the UTA recommends an ad hoc action as‚ best 
next action (BNA) to knowledge workers when a pattern match
is identified.

The role of the UTA in an ACM system is depicted in Fig.
1. In an ACM system, business processes can be predefined at 
design time and executed by knowledge workers at run time. 
Moreover, they can also add ad hoc tasks at run time as needed 
by assembling several ad hoc actions on the fly to work 
towards a well-defined goal. The UTA is applied in the ACM 
system to support knowledge workers in unpredictable 
situations to identify the BNA. The knowledge worker can 
decide whether to follow the recommendation or execute 
another ad hoc action. The main functionality of the UTA is to 
observe an ad hoc action created on the fly by knowledge 
workers; learn in which state an ad hoc action is created; and 
recommend an ad hoc action in a similar situation when its 
state is recognized from the knowledge of the UTA.

In this paper, we introduce the UTA principle and the 
benefits achieved when the UTA is applied in an ACM system
for knowledge sharing in a group of business users. The UTA 
internals and the pattern matching algorithms are not covered 
within this paper. The remainder of this paper is structured as 
follows: Section 2 introduces the UTA mechanism in the 
context of an ACM system. Section 3 describes the integration
of the UTA in the ISIS Papyrus ACM Solution using a central 

Fig. 1. The ACM environment
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metadata Repository for all case definitions. Related works are 
discussed in Section 4. The benefit of the approach is 
summarized in Section 5 as a conclusion of this paper.

II. UTA IN ACM 
As mentioned above, UTA is built on pattern recognition 

principles [1, 9, 10]. In the context of ACM a pattern is a state 
of a case when an ad hoc action is created. The state of a case 
is defined by its system and data objects and their attributes 
observed by the UTA. Depending on the configuration of the 
UTA, the state space could be the entire data related to the case 
or some selected features defined by a domain specific 
ontology. For example, a case in ACM is composed of goals, 
artifacts, tasks, processes, data objects [2]. These contextual 
elements can be potentially observed by the UTA and used as 
attributes for pattern recognition in a dynamic context. There 
are several challenges to manage complexity in ACM and 
proposed approaches have to deliver proof-of-value [12, 13].

The UTA operation is composed of two main functions i.e.
learning user actions related to case patterns, and 
recommending actions to performers when similar patterns are 
identified. In contrast to most machine learning programs that 
are trained with sample data sets, the learning function of the 
UTA is triggered in real-time by changes in the defined state
space of the case, which are applied by the knowledge workers.
The UTA extracts relevant data features to create action 
clusters for identifiying patterns. A learning function is 
triggered when an ad hoc action is taken by a particular 
knowledge worker. It is important that the learning is related to 
the role of the performer because the recommendation also has 
to be given to a performer with the same role. The features are 
extracted from the state space composed of the attributes of a 
case observed by the UTA. Each ad hoc action is represented 

by a cluster containing features and decision parameters that 
are used to decide whether a pattern is matched to the cluster. 
If a pattern matches the cluster, the action represented by the 
cluster is recommended to the knowledge worker and becomes 
part of the ongoing learning process if accepted.

Knowledge workers do not have to ask explicitly for a 
suggestion but the UTA will activate its recommendation 
function autonomously each time a pattern is identified and 
then recommends the action for which a pattern was found. 
Each time a user takes an action the UTA will trigger the 
learning function and look for related patterns. The 
recommendation function is executed in real time by scanning 
the knowledge of the UTA. The UTA’s knowledge can stem 
from diverse business situations of a company, a certain 
department or specific case type. If the similarity between the 
current state and the feature of a cluster exceeds a certain 
threshold, knowledge workers are suggested with that ad hoc
action. If there are multiple pattern matches found in the UTA 
knowledge, then the recommendation function provides a score 
from 1-5 indicating the quality of the recommendation (i.e., the 
higher the score, the better).

III. INTEGRATING UTA INTO ACM 
Fig. 2 displays the configuration of the UTA in the ISIS 

Papyrus ACM Solution. The UTA is represented by an UTA 
object that is attached to every business case in which the UTA 
should collect knowledge. In Fig.2 we show the ‘UTA 
Training Case’ and its elements marked by numbers for further 
referencing. Apart from the basic ACM elements of a case 
(2.1), which are goal, artifacts, processes, tasks, etc., this case 
includes the UTA object (2.2) containing the parameters 
applied for the UTA learning process. There are several crucial 

Fig. 2. The UTA configuration
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parameters that influence the learning speed and the result 
confidence of the UTA. The ‘Maximum Tree Depth’ property 
(2.3) defines the depth up to which the case trees are observed 
by the UTA. Objects that are deeper in that tree will not be 
considered. The ‘Active Filter’ property (2.4) defines a Class 
filter for derived metadata definitions in the Papyrus 
Repository that are considered for the state space observations 
for learning. Case objects which are not derived from these 
classes are ignored by the UTA.  
 Fig. 3 shows the internal knowledge structure of the UTA 
in a typical learning process. The ‘Knowledge’ item (3.1) 
consists of the ‘Training Sample Container’, ‘Action 
Container’, ‘Feature Container’ and ‘Cluster Container’. The 
‘Training Sample Container’ (3.2) is a collection of all samples 
that are passed to the UTA for learning whenever a knowledge 
worker executes an ad hoc action. There are three types of 
learning actions:

� Positive learning is performed by normal work of 
knowledge workers.

� Explicit negative samples are data constellations
where knowledge workers explicitly tell the UTA 
that a particular action is not valid, by denying the 
proposed BNA.

� Implicit negative learning for an action assumes
that samples used for a different action are 
negative samples for this action. This can be 
configured on the UTA settings.

 The ‘Action Container’ (3.3) contains all learned actions 

and is updated when a previously unknown action is observed.
All information about the used parameters is captured.

The ‘Feature Container’ (3.4) collects all available features 
(data attributes) for a certain action. Each feature contains 
information about the Repository class, the feature type and 
additional details about the used categorization.

 The ‘Cluster Container’ (3.5) contains a decision cluster for 
each action including references to the relevant features for the 
decision.

Fig. 4 shows the recommendation result of the UTA in two
previously inexperienced situations for the two ad hoc actions 
T1 and T2, depicted in the bold and light lines, respectively. 
The vertical dimension represents the confidence of the UTA 
for a certain recommendation; the horizontal dimension
represents action execution iterations by the knowledge 
worker. The aim of this learning is to examine the number of 
UTA observations needed for a specific ad hoc action and how 
the learning of an ad hoc action influences the other’s 
confidence scores. 

 To perform analysis of the UTA functions, we can apply 
two types of actions as they will also happen in real work 
structures: positive and negative learning. Positive learning 
implies that for this pattern in this state space the UTA should 
recommend this action. In contrast, the UTA will learn not to 
recommend this action for negative learning where wrongly 
recommended BNAs are marked as incorrect by the user 
performing this action. The combination of both types 
increases the speed of learning and the quality of the 
recommendation considerably.

Fig. 3. The UTA knowledge
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Considering the learning of action T1, at the second 
observation, the recommendation is already available and the 
confidence level is 2. It means at the second time, when the 
user creates a similar state as the one from the first time and 
asks for the BNA, the decision sample is passed to the UTA 
which finds it matching with the first one and thus 
recommends it with still low confidence level. After exceeding 
the configurable number of minimum learning steps, which is 
10 in this case, the confidence level starts to rise rapidly and 
reaches, after seventeen executions, the maximum level of 5
and then stays on that best available level. This means that a 
continuous observation of ad hoc actions by the UTA will 
provide knowledge workers with satisfying BNA suggestions 
just after few executions.

The learning of action T2 is started at the 18th iteration,
after the execution of T1. Note that the state space for T2 is 
different from the state of T1. Therefore, at the 19th iteration,
the confidence for T2 starts to increase while the confidence of 
T1 stays at 5. The learning curve of T2 is similar to the one 
from T1, regardless of the existence of T1. Such a behavior 
gives evidence that the learning of these two ad hoc actions is 
independent of each other.

The UTA is fully integrated into the ISIS Papyrus ACM 
Solution [4,5] to support the BNA as seen in Fig. 5.
Knowledge workers can call this function any time when they 
need decision support for ad hoc actions. Here, knowledge 
workers are suggested to add a task to the current goal called 
‚Compose an Offer‘. The confidence level is at its highest 

indicated by 5 stars. If it is not an expected action in the current 
state, knowledge workers can reject the suggestion by clicking 
the x round button on the right side. In this case, an explicit 
negative training sample is sent to the UTA.

IV. RELATED WORK

The work presented in this paper relates to the general 
stream of research on giving recommendations in process-
aware information systems. The work by Koschmider et al.
[14] provides recommendations to process modelers based on 
Lucene score. Recommendation concepts have been designed 
for supporting process modeling also based on action patterns 
[15] and on activity neighborhood [16]. The recommendation 
of activities at run time is mostly discussed from the 
perspective of process history and past execution, e.g. [17, 18], 
which has its roots in the adaptation of case-based reasoning 
concepts to workflow management. 

The work presented here also adopts concepts from 
ontology matching [19]. Recently, this area of research has 
been extended towards matching of process models. Typically, 
works in this area integrate concepts of behavioral similarity 
[20] into the matching procedure. Early works like the ICoP 
framework [21] have been extended with semantic concepts 
towards better precision and recall [22, 23]. The current state of 
the art is summarized in [24].

 The contribution of this paper is that it is among the first to 
adopt ontology matching towards operational support in ACM. 

V. CONCLUSION

In this paper we introduce an approach for ACM systems to 
share the knowledge between groups of knowledge workers 
being experts in their specific domains. The knowledge is 
acquired from continuous observations of ad hoc actions taken 
by the knowledge workers. Thus, the system transfers the 
experience of a particular knowledge worker to the whole team 
taken from observations which were previously unknown to 
the system and also to the other knowledge workers. The UTA 
is fully integrated into the ISIS Papyrus ACM Solution and its 
associated business solutions which invoke the UTA by 
observing business people who act as process performers. 
Business users apply their knowledge to perform actions in 
order to achieve well-defined goals. Actions are represented by
the state space of the underlying object model. The UTA can 
therefore match actions of the knowledge workers in 
relationship to achieving these goals. It is important to point 
out that there is no need for an explicit training of the UTA by 
experts. The UTA learning is part of normal business work 
executed by business users acting as knowledge workers. The 
UTA is permanently in ‘learning mode’ and thus observes the 
performer actions in real-time. 

The results derived from the presented case show that with 
a suitable setup, the UTA is able to support the knowledge 
workers efficiently with best next action recommendations. 
Moreover, it can be analyzed if the recommendation of a 
certain ad hoc action is influenced by others. The results 
indicate the benefits of using an UTA in an ACM system to 
enhance the flexibility and adaptability during run time. It leads Fig. 5. The ‘Best next actions’ function in the ISIS Papyrus ACM 

system

Fig. 4. The UTA training
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to an organic evolution of the system based on the knowledge 
observed from all knowledge workers working with the system 
without tedious and error-prone manual process analysis and 
elaborate definitions by process modeling experts. 

Future work will deal with further interesting investigations 
about the integration of the UTA into an ACM system. The 
confidence ranking of BNAs could include a quality feedback 
from the knowledge worker. Another aspect is to base the 
distinction between space states not only on the explicit 
attribute values accessible from the underlying data model but 
also on implicit information contained in text contents. 
Therefore, semantic reasoning on the overall input data space 
could provide additional information for the UTA. We are also 
considering an ontology based approach to allow for a business 
domain oriented configuration of the UTA.  
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