
Towards a pattern recognition approach for
transferring knowledge in ACM

Thanh Tran Thi Kim
Christoph Ruhsam

Max Pucher
ISIS Papyrus Europe AG

Austria

Maximilian Kobler
University of Applied Sciences

Burgenland
Austria

Jan Mendling
Wirtschaftsuniversität Wien,

Institute for Information Business
Austria

Abstract— In Adaptive Case Management (ACM) systems,
knowledge workers have the flexibility to deal with unpredictable
situations. Compared with a classical BPM approach the
extensive prescriptive process analysis and definitions are
replaced by context-sensitive proposals, which is more suited for
knowledge-intensive work. Thus, it is vital that ACM systems
support knowledge workers with knowledge captured from
previous work which can be ambiguous for the system. This
paper proposes an approach to support knowledge workers
based on the knowledge previously applied by others in the form
of a User Trained Agent that learns from ad hoc actions taken by
knowledge workers to suggest best next actions for the current
situation. The proposed best next actions are analyzed for
coherence.

Keywords— ACM; pattern recognition; adaptive system;
decision support system; UTA; user trained agent

I. INTRODUCTION

Adaptive Case Management (ACM) systems provide
knowledge workers with capabilities to handle business cases
in a flexible way [1, 2, 3]. Besides following the processes
predefined in the systems for situations typically calling for
strict workflow needs like sign-off processes, knowledge
workers are able to decide adequately based on their
experience and knowledge on which ad hoc actions to conduct
given the current situation, irrespective of whether predefined
or not [4]. Currently most ACM systems allow knowledge
workers to select single ad-hoc actions freely but that action
will not in any way influence future execution. There is no
embedded learning mechanism availability towards facilitating
reuse of such ad hoc actions. ACM systems that provide a user
created template library are organized into categories but do
not support the knowledge worker in their decision making at
certain points in the process [5, 6]. In a specific situation the
decision is made only based on the knowledge worker’s own
experience but not from the collective knowledge base
stemming from all users working with the system. Thus, the
knowledge “which is only between two ears of a knowledge
worker” [7] is not available for other knowledge workers in the
ACM systems.

To overcome that lack of knowledge transfer we propose in
this paper an approach for capturing knowledge within an
ACM system and use that base for user recommendations. A
User Trained Agent (UTA) [8, 9] is built on a pattern
recognition principle [10]. A pattern represents a collection of

elements relevant for a decision taken from the scope of a
process or case to solve a particular problem in a certain
context [11]. The UTA analyzes what elements of a pattern are
relevant for an ad hoc action. Based on the gathered pattern
knowledge, the UTA recommends an ad hoc action as‚ best
next action (BNA) to knowledge workers when a pattern match
is identified.

The role of the UTA in an ACM system is depicted in Fig.
1. In an ACM system, business processes can be predefined at
design time and executed by knowledge workers at run time.
Moreover, they can also add ad hoc tasks at run time as needed
by assembling several ad hoc actions on the fly to work
towards a well-defined goal. The UTA is applied in the ACM
system to support knowledge workers in unpredictable
situations to identify the BNA. The knowledge worker can
decide whether to follow the recommendation or execute
another ad hoc action. The main functionality of the UTA is to
observe an ad hoc action created on the fly by knowledge
workers; learn in which state an ad hoc action is created; and
recommend an ad hoc action in a similar situation when its
state is recognized from the knowledge of the UTA.

In this paper, we introduce the UTA principle and the
benefits achieved when the UTA is applied in an ACM system
for knowledge sharing in a group of business users. The UTA
internals and the pattern matching algorithms are not covered
within this paper. The remainder of this paper is structured as
follows: Section 2 introduces the UTA mechanism in the
context of an ACM system. Section 3 describes the integration
of the UTA in the ISIS Papyrus ACM Solution using a central

Fig. 1. The ACM environment

2014 IEEE 18th International Enterprise Distributed Object Computing Conference Workshops and Demonstrations

978-1-4799-5467-4/14 $31.00 © 2014 IEEE

DOI 10.1109/EDOCW.2014.28

134

2014 IEEE 18th International Enterprise Distributed Object Computing Conference Workshops and Demonstrations

978-1-4799-5467-4/14 $31.00 © 2014 IEEE

DOI 10.1109/EDOCW.2014.28

134

metadata Repository for all case definitions. Related works are
discussed in Section 4. The benefit of the approach is
summarized in Section 5 as a conclusion of this paper.

II. UTA IN ACM
As mentioned above, UTA is built on pattern recognition

principles [1, 9, 10]. In the context of ACM a pattern is a state
of a case when an ad hoc action is created. The state of a case
is defined by its system and data objects and their attributes
observed by the UTA. Depending on the configuration of the
UTA, the state space could be the entire data related to the case
or some selected features defined by a domain specific
ontology. For example, a case in ACM is composed of goals,
artifacts, tasks, processes, data objects [2]. These contextual
elements can be potentially observed by the UTA and used as
attributes for pattern recognition in a dynamic context. There
are several challenges to manage complexity in ACM and
proposed approaches have to deliver proof-of-value [12, 13].

The UTA operation is composed of two main functions i.e.
learning user actions related to case patterns, and
recommending actions to performers when similar patterns are
identified. In contrast to most machine learning programs that
are trained with sample data sets, the learning function of the
UTA is triggered in real-time by changes in the defined state
space of the case, which are applied by the knowledge workers.
The UTA extracts relevant data features to create action
clusters for identifiying patterns. A learning function is
triggered when an ad hoc action is taken by a particular
knowledge worker. It is important that the learning is related to
the role of the performer because the recommendation also has
to be given to a performer with the same role. The features are
extracted from the state space composed of the attributes of a
case observed by the UTA. Each ad hoc action is represented

by a cluster containing features and decision parameters that
are used to decide whether a pattern is matched to the cluster.
If a pattern matches the cluster, the action represented by the
cluster is recommended to the knowledge worker and becomes
part of the ongoing learning process if accepted.

Knowledge workers do not have to ask explicitly for a
suggestion but the UTA will activate its recommendation
function autonomously each time a pattern is identified and
then recommends the action for which a pattern was found.
Each time a user takes an action the UTA will trigger the
learning function and look for related patterns. The
recommendation function is executed in real time by scanning
the knowledge of the UTA. The UTA’s knowledge can stem
from diverse business situations of a company, a certain
department or specific case type. If the similarity between the
current state and the feature of a cluster exceeds a certain
threshold, knowledge workers are suggested with that ad hoc
action. If there are multiple pattern matches found in the UTA
knowledge, then the recommendation function provides a score
from 1-5 indicating the quality of the recommendation (i.e., the
higher the score, the better).

III. INTEGRATING UTA INTO ACM
Fig. 2 displays the configuration of the UTA in the ISIS

Papyrus ACM Solution. The UTA is represented by an UTA
object that is attached to every business case in which the UTA
should collect knowledge. In Fig.2 we show the ‘UTA
Training Case’ and its elements marked by numbers for further
referencing. Apart from the basic ACM elements of a case
(2.1), which are goal, artifacts, processes, tasks, etc., this case
includes the UTA object (2.2) containing the parameters
applied for the UTA learning process. There are several crucial

Fig. 2. The UTA configuration

135135

parameters that influence the learning speed and the result
confidence of the UTA. The ‘Maximum Tree Depth’ property
(2.3) defines the depth up to which the case trees are observed
by the UTA. Objects that are deeper in that tree will not be
considered. The ‘Active Filter’ property (2.4) defines a Class
filter for derived metadata definitions in the Papyrus
Repository that are considered for the state space observations
for learning. Case objects which are not derived from these
classes are ignored by the UTA.
 Fig. 3 shows the internal knowledge structure of the UTA
in a typical learning process. The ‘Knowledge’ item (3.1)
consists of the ‘Training Sample Container’, ‘Action
Container’, ‘Feature Container’ and ‘Cluster Container’. The
‘Training Sample Container’ (3.2) is a collection of all samples
that are passed to the UTA for learning whenever a knowledge
worker executes an ad hoc action. There are three types of
learning actions:

� Positive learning is performed by normal work of
knowledge workers.

� Explicit negative samples are data constellations
where knowledge workers explicitly tell the UTA
that a particular action is not valid, by denying the
proposed BNA.

� Implicit negative learning for an action assumes
that samples used for a different action are
negative samples for this action. This can be
configured on the UTA settings.

 The ‘Action Container’ (3.3) contains all learned actions

and is updated when a previously unknown action is observed.
All information about the used parameters is captured.

The ‘Feature Container’ (3.4) collects all available features
(data attributes) for a certain action. Each feature contains
information about the Repository class, the feature type and
additional details about the used categorization.

 The ‘Cluster Container’ (3.5) contains a decision cluster for
each action including references to the relevant features for the
decision.

Fig. 4 shows the recommendation result of the UTA in two
previously inexperienced situations for the two ad hoc actions
T1 and T2, depicted in the bold and light lines, respectively.
The vertical dimension represents the confidence of the UTA
for a certain recommendation; the horizontal dimension
represents action execution iterations by the knowledge
worker. The aim of this learning is to examine the number of
UTA observations needed for a specific ad hoc action and how
the learning of an ad hoc action influences the other’s
confidence scores.

 To perform analysis of the UTA functions, we can apply
two types of actions as they will also happen in real work
structures: positive and negative learning. Positive learning
implies that for this pattern in this state space the UTA should
recommend this action. In contrast, the UTA will learn not to
recommend this action for negative learning where wrongly
recommended BNAs are marked as incorrect by the user
performing this action. The combination of both types
increases the speed of learning and the quality of the
recommendation considerably.

Fig. 3. The UTA knowledge

136136

Considering the learning of action T1, at the second
observation, the recommendation is already available and the
confidence level is 2. It means at the second time, when the
user creates a similar state as the one from the first time and
asks for the BNA, the decision sample is passed to the UTA
which finds it matching with the first one and thus
recommends it with still low confidence level. After exceeding
the configurable number of minimum learning steps, which is
10 in this case, the confidence level starts to rise rapidly and
reaches, after seventeen executions, the maximum level of 5
and then stays on that best available level. This means that a
continuous observation of ad hoc actions by the UTA will
provide knowledge workers with satisfying BNA suggestions
just after few executions.

The learning of action T2 is started at the 18th iteration,
after the execution of T1. Note that the state space for T2 is
different from the state of T1. Therefore, at the 19th iteration,
the confidence for T2 starts to increase while the confidence of
T1 stays at 5. The learning curve of T2 is similar to the one
from T1, regardless of the existence of T1. Such a behavior
gives evidence that the learning of these two ad hoc actions is
independent of each other.

The UTA is fully integrated into the ISIS Papyrus ACM
Solution [4,5] to support the BNA as seen in Fig. 5.
Knowledge workers can call this function any time when they
need decision support for ad hoc actions. Here, knowledge
workers are suggested to add a task to the current goal called
‚Compose an Offer‘. The confidence level is at its highest

indicated by 5 stars. If it is not an expected action in the current
state, knowledge workers can reject the suggestion by clicking
the x round button on the right side. In this case, an explicit
negative training sample is sent to the UTA.

IV. RELATED WORK

The work presented in this paper relates to the general
stream of research on giving recommendations in process-
aware information systems. The work by Koschmider et al.
[14] provides recommendations to process modelers based on
Lucene score. Recommendation concepts have been designed
for supporting process modeling also based on action patterns
[15] and on activity neighborhood [16]. The recommendation
of activities at run time is mostly discussed from the
perspective of process history and past execution, e.g. [17, 18],
which has its roots in the adaptation of case-based reasoning
concepts to workflow management.

The work presented here also adopts concepts from
ontology matching [19]. Recently, this area of research has
been extended towards matching of process models. Typically,
works in this area integrate concepts of behavioral similarity
[20] into the matching procedure. Early works like the ICoP
framework [21] have been extended with semantic concepts
towards better precision and recall [22, 23]. The current state of
the art is summarized in [24].

 The contribution of this paper is that it is among the first to
adopt ontology matching towards operational support in ACM.

V. CONCLUSION

In this paper we introduce an approach for ACM systems to
share the knowledge between groups of knowledge workers
being experts in their specific domains. The knowledge is
acquired from continuous observations of ad hoc actions taken
by the knowledge workers. Thus, the system transfers the
experience of a particular knowledge worker to the whole team
taken from observations which were previously unknown to
the system and also to the other knowledge workers. The UTA
is fully integrated into the ISIS Papyrus ACM Solution and its
associated business solutions which invoke the UTA by
observing business people who act as process performers.
Business users apply their knowledge to perform actions in
order to achieve well-defined goals. Actions are represented by
the state space of the underlying object model. The UTA can
therefore match actions of the knowledge workers in
relationship to achieving these goals. It is important to point
out that there is no need for an explicit training of the UTA by
experts. The UTA learning is part of normal business work
executed by business users acting as knowledge workers. The
UTA is permanently in ‘learning mode’ and thus observes the
performer actions in real-time.

The results derived from the presented case show that with
a suitable setup, the UTA is able to support the knowledge
workers efficiently with best next action recommendations.
Moreover, it can be analyzed if the recommendation of a
certain ad hoc action is influenced by others. The results
indicate the benefits of using an UTA in an ACM system to
enhance the flexibility and adaptability during run time. It leads Fig. 5. The ‘Best next actions’ function in the ISIS Papyrus ACM

system

Fig. 4. The UTA training

137137

to an organic evolution of the system based on the knowledge
observed from all knowledge workers working with the system
without tedious and error-prone manual process analysis and
elaborate definitions by process modeling experts.

Future work will deal with further interesting investigations
about the integration of the UTA into an ACM system. The
confidence ranking of BNAs could include a quality feedback
from the knowledge worker. Another aspect is to base the
distinction between space states not only on the explicit
attribute values accessible from the underlying data model but
also on implicit information contained in text contents.
Therefore, semantic reasoning on the overall input data space
could provide additional information for the UTA. We are also
considering an ontology based approach to allow for a business
domain oriented configuration of the UTA.

ACKNOWLEDGMENT

We are grateful for the testing performance by E. Weiss in
cooperation between ISIS Papyrus Europe AG and University
of Applied Sciences Burgenland under the supervision of Dr.
Kobler.

REFERENCES

[1] M.J. Pucher, “The Strategic Business Benefits of Adaptive Case
Management,” in How Knowledge Workers Get Things Done - Real-
World Adaptive Case Management, L. Fischer, Ed. Florida: Future
Strategies Inc, 2012, pp. 19-37.

[2] K. Swenson, Mastering the Unpredictable: How Adaptive Case
Management Will Revolutionize the Way That Knowledge Workers Get
Things Done, Florida: Megan-Kiffer Press, 2010.

[3] M.J. Pucher. (2014, April 17). The Forrester Research Wave on DCM
2014, Available: http://acmisis.wordpress.com/2014/04/17/the-forrester-
research-wave-on-dcm-2014/

[4] T.T.K. Tran, M.J Pucher, J. Mendling, C. Ruhsam, “Setup and
Maintenance Factors of ACM Systems,” in OTM Workshops, Lecture
Notes in Computer Science, Springer, vol 8186, pp. 172-177, 2013.

[5] H.F. Sem, T.B. Pettersen, S. Carlsen, G. J. Coll, “Patterns Boosting
Adaptivity in ACM,” in OTM Workshops, Lecture Notes in Computer
Science, Springer, vol 8186, pp. 102-111, 2013.

[6] P.F. Drucker, Management Challenges for the 21st Century, Harper
Collins Publishers, 2001.

[7] M.J. Pucher, “Method for training a system to specifically react on a
specific input,” U.S. Patent USPTO Application #20080114710, May
15, 2008.

[8] M.J. Pucher. (2010, October 1). Process Mining versus User-Trained
Agent. Available: http://acmisis.wordpress.com/2010/10/01/process-
mining-versus-user-trained-agent/.

[9] M.J. Pucher. (2010, May 7). The User-Trained Agent has an EYE on
Goals. Available: http://isispapyrus.wordpress.com/2010/05/07/with-an-
eye-on-goals/

[10] C.M. Bishop, Pattern Recognition and Machine Learning, Springer,
2006.

[11] A. Bögl, M. Kobler, M. Schrefl, “Knowledge Acquisition from EPC
Models for Extraction of Process Patterns in Engineering Domains,” in
Proceedings der Multikonferenz Wirtschaftsinformatik, Gito-Verlag, pp.
155-171, 2008.

[12] I. Rychkova, “Towards Automated Support for Case Management
Processes with Declarative Configurable Specifications,” in BPM
Workshops, Lecture Notes in Business Information Processing,
Springer, vol 132, pp. 65-76, 2013.

[13] S. Huber, A. Hauptmann, M. Lederer, M. Kurz, “Managing Complexity
in Adaptive Case Management” in S-BPM ONE Running Solutions: 5th
International Conference Proc, Fischer, H., Schneeberger, J. (Eds.),
Deggendorf, Germany, Springer, Berlin, pp. 209-226, 2013.

[14] K. Agnes, T. Hornung, A. Oberweis, "Recommendation-based editor for
business process modeling," in Data & Knowledge Engineering, vol
70.6, pp. 483-503, 2011.

[15] S. Smirnov, M. Weidlich, J. Mendling, M. Weske, “Action patterns in
business process model repositories,” in Computers in Industry, vol
63.2, pp. 98-111, 2012.

[16] C. Nguyen Ngoc, W. Gaaloul, S. Tata, "Assisting business process
design by activity neighborhood context matching," in Service-Oriented
Computing, Springer Berlin Heidelberg, pp. 541-549, 2012.

[17] H. Schonenberg, B. Weber, B. F. van Dongen, W. M. P. van der Aalst,
“Supporting Flexible Processes through Recommendations Based on
History,” in BPM 2008 Proc, pp. 51-66, 2008.

[18] B. Weber, W. Wild, R. Breu, “CBRFlow: Enabling Adaptive Workflow
Management Through Conversational Case-Based Reasoning,” in
Advances in Case-Based Reasoning, Lecture Notes in Computer
Science, Springer-Verlag, Berlin, vol 3155, pp. 434-448, 2004.

[19] J. Euzenat, S. Pavel, "Classifications of ontology matching techniques,"
in Ontology Matching, Springer Berlin Heidelberg, pp. 73-84, 2013.

[20] R. M. Dijkman, M. Dumas, B. F. van Dongen, R. Käärik, J. Mendling,
“Similarity of business process models: Metrics and evaluation,” in
Information System, Semantic Integration of Data, Multimedia, and
Services, vol 36.2, pp. 498-516, 2011.

[21] M. Weidlich, R. M. Dijkman, J. Mendling, “The ICoP Framework:
Identification of Correspondences between Process Models,” in CAiSE
Proc, pp. 483-498, 2010.

[22] H. Leopold, M. Niepert, M. Weidlich, J. Mendling, R. M. Dijkman,
“Heiner Stuckenschmidt: Probabilistic Optimization of Semantic
Process Model Matching, ” in BPM 2012 Proc, pp. 319-334, 2012.

[23] C. Klinkmüller, I. Weber, J. Mendling, H. Leopold, A. Ludwig,
“Increasing Recall of Process Model Matching by Improved Activity
Label Matching,” in BPM 2013 Proc, pp. 211-218, 2013.

[24] U. Cayoglu et al., “The Process Model Matching Contest 2013,” in 4th
International Workshop on Process Model Collections:Management and
Reuse, PMC-MR 2013, China, 2013.

138138

