
Towards a Compliance Support Framework for
Adaptive Case Management

Christoph Czepa∗, Huy Tran∗, Uwe Zdun∗, Thanh Tran Thi Kim†, Erhard Weiss† and Christoph Ruhsam†
∗University of Vienna, Faculty of Computer Science, Software Architecture Research Group,

Währingerstraße 29, 1090 Vienna, Austria
Email: {christoph.czepa, huy.tran, uwe.zdun}@univie.ac.at

†Isis Papyrus Europe AG, Alter Wienerweg 12, 2344 Maria Enzersdorf, Austria
Email: {thanh.tran, erhard.weiss, christoph.ruhsam}@isis-papyrus.com

Abstract—Current Adaptive Case Management (ACM) so-
lutions are strong in flexibility, but business users must still
meet compliance rules stemming from sources such as laws
(e.g., Sarbanes-Oxley Act), standards (e.g., ISO 45001) and best
practices (e.g., ITIL). This paper presents a framework on how
to enable support for compliance in the context of ACM by
constraints. Since ACM applications undergo constant change,
there must be ways to introduce compliance rules on the fly.
Currently, constraints (and similar alternative solutions) are
predominately maintained by technical users, which results in
long maintenance cycles. Our framework aims at enabling faster
adoption of changing compliance requirements, both explicitly by
enabling non-technical users (knowledge workers) to define and
adapt constraints, and implicitly by learning from the decisions
taken by other knowledge workers during case enactments. The
former is achieved by supporting domain knowledge, maintained
in an ontology. The latter is supported by a recommendation
approach that enables an automated knowledge transfer between
knowledge workers by propagating tacit knowledge, best prac-
tices, and the handling of constraints and their violations.

I. INTRODUCTION & MOTIVATION

Knowledge-intensive processes are challenging: On the one
hand, knowledge workers must cope with rapidly changing
environments and handle very specific situations which can
not be fully designed before the process is executed and
require runtime flexibility. On the other hand, the domains in
which knowledge work is necessary are often heavily regulated
(e.g., the insurance or health sector) and staying compliant
is difficult if the IT system does not provide the necessary
support to follow the imposed compliance requirements.

Adaptive Case Management (ACM) is a paradigm for
flexible, goal- and knowledge-driven business process manage-
ment [1]. ACM enables knowledge workers to actively shape
the way case instances are executed while documenting their
actions and providing the needed IT support. ACM solutions
must support knowledge workers to stay on the right track
instead of hindering their work. Long maintenance cycles
might lead to the enactment of outdated compliance rules and
new, useful compliance rules might be introduced with month-
long delays.

This paper presents a framework that aims at enabling faster
adoption of changing compliance requirements, both explicitly
by enabling non-technical users (i.e., the so-called knowledge
workers) to define and adapt constraints, and implicitly by

learning from the decisions made by other knowledge workers
during case enactments. The former is achieved by support-
ing domain knowledge, realized as an ontology which links
domain-specific concepts (defined by knowledge workers) to
technical concepts of the ACM ontology (defined by technical
users). The latter is supported by a recommendation approach
that enables an automated knowledge transfer between knowl-
edge workers by propagating tacit knowledge, best practices,
and the handling of constraints and their violations. This
recommendation approach is a machine learning problem
that can be described as a decision learning (classification)
problem. The framework describes the steps that are necessary
to prepare data from past case enactments for the learning,
namely the selection which past case enactments must be
considered for achieving a specific purpose (e.g., to overcome
a specific constraint violation), and the preprocessing that uses
ontology knowledge to prepare information for the learning
process, such as temporal relationships (e.g., relative time
between the completion of one task and another).

II. FRAMEWORK OVERVIEW

Figure 1 shows an overview of the proposed constraint
framework for ACM. The framework comprises one central
concept, the ontology, one targeted type of stakeholder, the
knowledge worker, and five supported functionalities:

(Central Concept) The Ontology comprises the ontology of
the ACM domain and the ontology of a business domain (or
the ontologies of several business domains). Business domain-
specific concepts (e.g., a domain-specific activity) are put in
relation to ACM concepts (e.g., a generic user task that is
supported by the ACM application). While the ACM ontology
is maintained by technical users (e.g., the vendor), knowledge
workers can adapt the ontology of their domain. Constraints
can be formulated on the basis of the ontology of the domain,
which means that knowledge from the domain supports the
creation of constraints. During constraint enactment, it is
known which concept is a generalization of which other con-
cept and how concepts are related. Consequently, constraints
can be evaluated based on existing case elements, such as
tasks, goals, and data objects, which are concrete instances of
those concepts. For example, instead of recommending very
specialized next actions to knowledge workers during case



Ontology Knowledge 
Workers

Constraint 
Elicitation

Constraint 
Authoring

Constraint 
Enactment

Case 
Enactment

Recommendation 
of Actions

leads to

perform

use

use

uses

uses

uses

uses uses

updates

sends 
events to

sends constraint 
state updates to

observes

Fig. 1. Overview of Compliance Support Framework

enactment, it probably makes sense to propose a more general
approach (i.e., a parent concept) that fosters a greater scope
of possibilities instead (e.g., instead of proposing the action
‘payment by credit card’, the more general action ‘payment’
can be proposed).

(Targeted Stakeholder) Knowledge workers are the main
drivers of the ACM system. They handle cases to the best
of their knowledge while having to cope with unforeseeable
situations commonly. Their knowledge is the foundation of
this constraint framework. On the one hand, their knowledge
is directly used to define the domain ontology. On the other
hand, their knowledge is automatically processed to propagate
it to other knowledge workers which enables an automatic
knowledge transfer among knowledge workers.

(Functionality 1) Constraint Elicitation is concerned with
transforming regulatory laws, standards, best practices and
tacit knowledge into internal policies, and in a next step to
constraints that can be automatically enacted.

(Functionality 2) Constraint Authoring is concerned with
defining, modifying and managing constraints. The language
used to create constraint expression is partly derived from the
ontology and can make use of the domain concepts and their
relations. Other parts of the constraint language are related to
specific constraint patterns (e.g., [2]).

(Functionality 3) Constraint Enactment monitors constraint
instances. Reacting to constraint modifications and carrying
out the necessary steps (e.g., removal of an obsolete constraint
instance) are important responsibilities of this component.
Constraint enactment reevaluates the states of constraint in-
stances with every new relevant received event. State changes,
in particular those that violate constraints, are reported to the
knowledge worker.

(Functionality 4) Case Enactment comprises the daily busi-

ness of knowledge workers, namely the handling of cases to
progress towards specific goals while coping with unforesee-
able circumstances on a regular basis. Documents and data
objects are continuously created, modified and reviewed. Tasks
can be delegated to and carried out by knowledge workers
belonging to different professions. During case enactment,
knowledge workers are continuously informed about constraint
violations.

(Functionality 5) Recommendation of Actions enables au-
tomated knowledge transfers between knowledge workers.
Whenever the knowledge worker seeks advice from this com-
ponent, the current circumstances and the history of the case
are used to find one or more appropriate candidate actions that
are in line with the decisions made by knowledge workers that
have been in a similar situation. This component propagates
information, such as tacit knowledge, evolved best practices
and compensation actions between knowledge workers.

Knowledge workers are characterized as being knowledge-
able in their business domain. Most often, this knowledge ex-
ists merely as tacit knowledge, so it is not explicitly available
in an organization or company. For the proposed framework,
this has two important consequences:

• The application of their knowledge must not be hindered
by the IT system (i.e., a prescriptive approach must be
avoided).

• This tacit knowledge is an opportunity to improve the
enactment of cases in general (e.g., less experienced busi-
ness users might benefit from formerly tacit knowledge
of more experienced colleagues).

The proposed constraint framework aims at providing adequate
support for these two implications. On the one hand, the
framework does not intend to prohibit any action of knowledge
workers. On the other hand, it is designed to support knowl-
edge transfers through the ACM system to other knowledge
workers. Figure 2 schematically shows the knowledge transfer
cycle in the design of the framework. There exist three
feedback loops that potentially cause the actions of knowledge
workers to become influenced by other knowledge workers.

A. Recommendation Feedback Loop

In Figure 2, the loop starts with Knowledge Workers who
handle cases (Case Enactment). The Recommendation of
Actions component observes their actions continuously and
learns from them. Eventually, Knowledge Workers can query
Recommendation of Actions whenever they require advice. If
a similar situation has occurred in the past, then a proposal
for potential next actions is made. This loop directly feeds
back the decisions of knowledge workers to other knowledge
workers. Consequently, the function of the Recommendation
Feedback Loop is the fast propagation of formerly implicit
knowledge. This may include compensation actions to recover
from a constraint violation and evolving practices how to
handle specific situations.



Case Enactment

Knowledge Workers

Recommendation 
of Actions

Constraint Elicitation

Constraint Authoring

Constraint Enactment

Recommendation 
Feedback Loop

Enactment & Elicitation
Feedback Loops

Fig. 2. Knowledge Transfer Cycle

B. Enactment Feedback Loop

This loop starts with Knowledge Workers who observe that a
large quantity of Constraint Enactments of a specific constraint
are in a state of violation. This might be an indication for
changing this constraint, so Constraint Elicitation is performed
to evaluate this particular constraint. If the set of constraints
is adapted (Constraint Authoring), Constraint Enactment will
propagate this change to Knowledge Workers during Case
Enactment. Consequently, the main objective of the Enactment
Feedback Loop is to react to constraint violations. If a large
number of constraint instances with a particular constraint in
a state of violation is observed, then there might be a need to
adapt the set of constraints. Maybe the rules of the business
have changed or there was an error introduced into the set of
constraints unintentionally.

C. Elicitation Feedback Loop

This loop starts with Knowledge Workers who see the need
for Constraint Elicitation (e.g., new constraints are needed to
implement a compliance document which describes upcom-
ing compliance requirements) and introduce new constraints
by Constraint Authoring that become effective as constraint
instances in Constraint Enactment. The Case Enactment by
Knowledge Workers might be influenced by the changed set of
constraints. In contrast to the Enactment Feedback Loop, this
loop is not triggered by violations occurring during Constraint
Enactment. Consequently, the main objective of the Elicitation
Feedback Loop is to fully integrate knowledge workers directly
in the constraint elicitation and creation process. Knowledge
workers participate in constraint elicitation and actively con-
tribute their domain knowledge while working on new internal
policies that they formally specify as constraints. Once new
policies are enacted as constraints of the ACM system, the

extends
Domain 

Ontology
ACM 

Ontology

Fig. 3. Integration of domain-specific ontology with ACM ontology

knowledge workers’ future decisions are potentially influenced
by them.

III. FRAMEWORK COMPONENTS

A. Ontology

Ontologies are an efficient way to organize information. The
set of components of ontologies include concepts, attributes,
relations and instances. A domain ontology represents the
knowledge of a specific business domain. Depending on the
business domain, the ontology can look fairly different. For the
ACM system, it is important that domain concepts are related
to technical concepts of the ACM domain (Figure 3). Multiple
business ontologies can be combined with this single ACM
ontology. By this, the ACM system, for example, could be
made aware that the domain concept ‘Payment’ is actually in
technical terms a ‘Task’ (Figure 4). The example given in Fig-
ure 4 illustrates conceptually how the ontology of the domain
can be connected to the ontology of the ACM system and how
both are integrated in a constraint language (for illustration
purpose also described by concepts and relations). Through
this architecture, it becomes possible to define constraints on
the basis of higher-level concepts. For example, there could be
a policy “Shipped orders must eventually be paid” which can
be represented in a textual constraint language as “Shipping
is finished leads to Payment is finished”. There are concepts
derived from Payment, like Payment by Credit Card that are
also covered by this constraint. Even a tighter integration of the
business ontology is possible: Consider that not only concepts
can be mapped to ACM elements but also larger structures
of the domain ontology. For example, consider two concepts,
‘Order’ and ‘Customer’, and their relation ‘can be placed by’.
This would allow to derive a task ‘Place Order’ with performer
‘Customer’ directly from the domain ontology and further
allows to use this domain knowledge not only during case
enactment but also for the definition of constraints.

B. Constraint Elicitation & Constraint Authoring

The main purpose of Constraint Elicitation is the extraction
of internal policies from compliance documents which will
in further consequence be introduced to the ACM system as
constraints, and the evaluation of existing constraints with
regards to internal policies. In a next step, these policies are fed
into the ACM system as constraints (Constraint Authoring).

Figure 5 illustrates Constraint Authoring. Knowledge work-
ers can use the Constraint Editor to author constraints. More-
over, they can define the ontology of their business domain. A
Constraint Editor provides the functionality to create Natural
Language Constraints. These constraints consist of parts stem-
ming from a Constraint Grammar that abstracts underlying
formal verification techniques, and of other expressions that



Operator

Binary 
Operator

Unary 
Operator

is a is a

Expression

operand

leftOperand

rightOperand

ACM 
Expression

Constraint 
Pattern

is a

Logical 
Operator

is a

Conjunction 
Operator

is a

Disjunction 
Operator

is a

Precedence
Pattern

is a

Negation 
Operator

is a

is a

is a

is a

is a

is a

Task 
Expression

is a

Constraint
Ontology

Goal 
Expression

is a

ACM
Ontology

Domain
Ontology

Task StateTask
state

task

Task 
Started

Task 
Finished

is a is a

Payment

is a

Payment 
Received

Payment 
Requested

is ais a

Payment 
Statestate

is a

is a

is a

Fig. 4. Ontology Example

reflect the concepts and relations defined in the Ontology. A
screenshot of our implementation of a user interface for editing
constraints and the ontology is shown in Figure 6.

Since business users do not necessarily have a technical
background, constraints should be easily understood. Conse-
quently, technical constraint authoring must be avoided and a
natural language approach is suggested. In the current state-
of-the-art, the grammar or feature set of the language is
rarely defined as part of the ontology (cf. [3]), but rather
separate from it in a dedicated grammar that makes use of the
ontology elements (cf. [4]). Either way, the core function of the
domain ontology is the support of domain-specific concepts
and relations, which are important not only for the definition
of constraints but for the case enactment in general since

Constraint 
Editor

Ontology
queries

Constraint 
Grammar

follows

Knowledge Workers

uses define

Natural 
Language 

Constraints

creates

Fig. 5. Constraint Authoring

Ontology Editor

Constraint Editor

Fig. 6. Screenshot of Constraint Editor and Ontology Editor

knowledge workers operate based on their known domain
concepts instead of technical terms.

Each created constraint has five properties. The first three
properties are proposed by Leitner et al. [5] for flow-driven
business processes. We adapt them to fit into the scope of
ACM, discuss them in relation to our framework, and add
an important fourth and fifth property named Coverage and
Regionality:

(1) Localization: In which case instances must the constraint
hold?

• Inter-Organizational Localization: The constraint is en-
acted for instances of cases that exist in more than a
single organization. If the IT system is incoherent, the
constraint must be either propagated to other organiza-



tions for enactment on their side, or the constraint is
enacted centrally with the propagation of results to other
organizations. Our framework assumes a single, coherent
ACM system which can be used by several organizations
(e.g., companies).

• Inter-Case-Concept Localization: The constraint is en-
acted for all instances of several cases. Hence, the con-
straint is imposed on multiple case concepts. This kind
of localization requires a classification of a case instance
to relate it to a case concept. This can be done either
automatically (e.g., a specific case template is instan-
tiated) or manually (e.g., the knowledge worker opens
a case instance and decides for specific case concepts),
depending on the circumstances. It is supported by the
framework.

• Intra-Case-Concept Localization: The constraint is en-
acted for all instances of a specific case concept. It is
supported by the framework.

• Intra-Case-Instance Localization: The constraint is en-
acted for a specific case instance only. This will be rarely
the case since specialized compliance treatment of a
case instance is rather unlikely. Consequently, Intra-Case-
Instance Localization is not supported by the framework.

(2) Span: What happenings are observed for the enactment
of the constraint?

• Intra-Case-Instance Span: The happenings of a single
case instance are considered. That is, the constraint
enactment does not observe happenings in other case
instances for this constraint instance. This is the most
common kind of span (cf. e.g., [6], [7], [8], [2], [9]).
Since we have not yet encountered the requirement for
other kinds of span in case studies (e.g., [8], [4]) as
well, our solution supports this kind of span exclusively.
Nevertheless, if a need for other kinds of span evolves,
the proposed constraint support framework can consider
the other kinds of span as well.

• Inter-Organizational Span: The happenings of all case
instances of multiple case concepts that exist in multiple
organizations are considered.

• Trans-Organizational Span: The happenings of all case
instances of a single case concept that exists in multiple
organizations are considered.

• Inter-Case-Concept Span: The happenings of all case
instances of multiple case concepts are considered.

• Intra-Case-Concept Span: The happenings of all case
instances of a case concept are considered.

(3) Dependency: A constraint is either independent of its
previous enactments or dependent. If it is dependent, then it
becomes, for example, possible to enact it only every second
time. Since we have not yet discovered a practical use case for
the Dependency property, it is not supported by the proposed
framework.

(4) Coverage: A constraint covers specific periods of time.
There exist two periods:

• Enactment Period: The constraint is enacted in this pe-

riod of time. If the constraint is not yet active (current
time < enactment start time) or already expired (current
time > enactment end time), the constraint enactment
component does not consider it.

• Retrospect Period: Past events, which occurred before
the constraint entered the enactment period, can have
an influence on the current state of a constraint. Thus,
constraint enactment must also take these happenings into
account for the defined period of time. Obviously, the
retrospect period ends with the start of the enactment
period. The retrospect period requires the ACM system
to provide happenings falling into this period of time.

(5) Regionality: If the organization is (or the organizations
are) spread over different regions (e.g., different countries),
each region might have different regulations that must be met.
Additionally, there might be cultural differences in the way
how cases are handled by knowledge workers. Our approach
considers this by allowing the assignment of constraints to
specific case concepts for different regions that are derived
from more general case concepts.

C. Case Enactment

Case Enactment is the basic functionality of every ACM
system. Knowledge worker collaboratively work towards goals
by performing tasks, and data and content (e.g., documents)
are continuously modified. This component must capture the
state and actions of a case extensively. Only then is the con-
straint framework working effectively. If knowledge workers
perform actions that are not disclosed to the IT system, then
Constraint Enactment possibly cannot provide notifications
regarding violations, and knowledge transfers through the
Recommendation of Actions would not work. It is important
to raise the awareness of knowledge workers to properly
document all of their (manual) actions.

D. Constraint Enactment

There exist various possibilities for enabling Constraint
Enactment. Linear Temporal Logic (LTL) is an established
formal way to describe specifications for both design time (cf.
[10], [11]) and runtime verification (cf. [6], [12]). Dwyer et
al. propose a set of property specification patterns that abstract
temporal logic formulas to high-level order and occurrence
patterns. Elgammal et al. build upon this pattern set and
create a compliance language [2]. Temporal patterns can be
represented by different underlying formalisms and checking
techniques. Complex Event Processing (CEP) can process a
large quantity of events in close to real-time and is applied
for temporal pattern-based runtime verification of business
processes in recent studies ([8], [7]). Our constraint enact-
ment approach and prototypical implementation is based on
CEP. For a detailed survey on approaches and categorization
based on functionalities, we refer the interested reader to the
Compliance Monitoring Framework (CMF) as proposed by Ly
et al. [13]. They analyze existing compliance monitoring ap-
proaches based on ten Compliance Monitoring Functionalities
(CMFs):



• CMF 1: Constraints referring to time
• CMF 2: Constraints referring to data
• CMF 3: Constraints referring to resources
• CMF 4: Supporting non-atomic activities
• CMF 5: Supporting activity life cycles
• CMF 6: Supporting multiple instances constraints
• CMF 7: Ability to reactively detect and manage violations
• CMF 8: Ability to pro-actively manage violations
• CMF 9: Ability to explain the root cause of a violation
• CMF 10: Ability to quantify the degree of compliance

The CMF framework does not yet contain criteria to categorize
the support for constraint authoring and maintainability, or
the integration of ontologies. Many existing compliance mon-
itoring approaches still require well-trained, rather technical
personnel for creating and maintaining constraints, which
is still an obstacle for the practical adoption in real-world
applications. Shifting the language of constraint specification
towards natural and domain specific terminology might enable
non-technical business users to actively take part in managing
constraints.

E. Recommendation of Actions

As Ly et al. point out in [13], so far there exists no
compliance monitoring approach which supports more than
seven of their identified ten CMFs. To illustrate the challenges
involved with supporting specific existing CMF combinations,
let us consider the combination of CMF 2 (data) and CMF 8
(pro-active management). To the best of our knowledge, none
of the existing approaches provides support for this combina-
tion. Existing approaches realize pro-active support by using
Constraint Programming (CP) to plan a case execution by
finding solutions that satisfy all constraints eventually (cf. [14],
[15]). It is hardly surprising that these approaches focus on the
order of tasks because this level of abstraction allows to model
an optimization problem of a reasonable size (assuming that
the number of task is not very large). Existing approaches
work as follows: The start and completion events of tasks
are represented by an integer value and the optimization tries
to find an optimal order for these events given an objective
function and a set of constraints. For example, objective
functions may minimize time or costs, and a constraint may
demand that a variable is smaller than another variable to
represent common compliance patterns, such as Precedence
or Response. If data were included in this optimization pro-
cess, there would be a time and a specific value for each
data adaption. Consequently, the optimization problem would
become infeasible to solve. Moreover, planning specific future
data changes seems like a pointless exercise because it simply
cannot be planned beforehand. In ACM, data is an essential
part of every case, so constraints that involve data are likely to
occur, but existing pro-active compliance support approaches
are not able to support data-based constraints.

To overcome this limitation, we propose to leverage the
decisions made by knowledge workers for the automated
recommendation of next actions. The Recommendation of Ac-
tions component seeks to leverage past actions of knowledge

workers to learn from their decisions and to subsequently
provide support for other knowledge workers who are in
similar situations. Tran et al. propose a User Trained Agent
(UTA) for the recommendation of actions [16]. The current
functionality of the UTA is as follows: Every time a knowledge
worker adds an ad-hoc task to a case, a training sample is
generated. Once there are several trainings samples under a
specific goal collected, features are selected [17]. Based on
these features, a clustering decision tree is generated [18].
The UTA preprocesses data to some extent but does not yet
consider temporal relationships that might have an influence
on the decisions of knowledge workers. Moreover, it does
not yet sufficiently integrate knowledge stemming from the
ontology and constraints. We are currently working on a
prototypical extension of the UTA that aims at improving
the preprocessing capabilities while preserving a reasonable
computational complexity.

The Recommendation of Actions component seeks to learn
from actions of knowledge workers and to propagate the
learned knowledge to other knowledge workers. This can
be achieved by machine learning after having prepared the
inputs for the learning process properly. Figure 7 illustrates
the learning process. The enactment of cases by knowledge
workers is recorded as Execution Logs. Selection is a filter-
ing process to consider only those execution logs that are
needed to create a prediction model with a specific purpose
(e.g., to help compensating specific compliance violation). By
Preprocessing, the Selected Execution Logs are prepared for
Machine Learning as Training Samples. Finally, a machine
learning approach creates a Prediction Model on basis of the
provided training samples.

Figure 8 shows how suggestions for next actions are made.
A knowledge worker requests a Next Action Suggestion for
a Case Instance that she or he is working on. Each enacted
case instance pertains information of all happenings in this
instance in an Execution Log. Preprocessing prepares the data
of the log as inputs for the instantiation of a Prediction
Model. The Prediction Model Instance contains probabilities
for performing specific next actions.

1) Selection: An important aspect of preprocessing is the
selection of execution logs. For example, if a knowledge
worker seeks help to compensate a compliance violation, only
those execution logs might be included for learning decisions
where this compliance violation was successfully resolved. If
the current case execution is compliant, it could be harmful
to include execution logs into the learning process that could
lead to non-compliance.

2) Preprocessing: A log must contain all the information
that might have an influence on the decisions of knowledge
workers. That includes events related to activities or data
adaption with meta-data such as the performer and timestamp
of the action as well as information about constraint violations.

The preprocessing component prepares the raw data from
logs for the automated learning process. To improve the
learning process, we propose to include temporal aspects of
decision (cf. [19], [20]) into the learning process. Moreover,



Training Samples

Machine 
Learning

Preprocessing

creates

uses
uses

Prediction Model

creates

Execution Logs

Case 
Enactment

creates

Knowledge Workers

perform

Selection

Selected 
Execution Logs

uses

creates

Ontology

uses

Fig. 7. Learning from the actions of knowledge workers

we propose the integration of domain knowledge given by the
ontology and the states of constraints. This involves diverse
ways to extract useful data, such as:

• Relative Intra-Instant Data Consideration: A relative or
aggregated value is created from two or more data values
for the same instant in time. For example, the account
balance is computed from incoming and outgoing pay-
ments.

• Relative Inter-Instant State Preprocessing: The relative
time between states of task, goals, events and constraints,
such as the start or end time is calculated. For example,
the time between the end of a medical examination and
the start of a surgery is computed.

• Relative Inter-Instant Data Preprocessing: The relative
change of data values from one instant in time to another
instant in time is computed. For example, the difference
of temperature data is computed from its values at in-
stant t-1 and instant t.

• Absolute Inter-Instant Data Preprocessing: Not only rela-
tive but also a series of absolute values of the same data
in different instants in time can be useful. For example:
The temperature of a patient is above 39 degrees Celsius
for a longer time which causes a special decision of a

Preprocessing
uses

Prediction Model
Instance

Case Instance

Preprocessed Data 

creates

uses

Next Action 
Suggestions

creates

can request

Knowledge Workers

perform

Execution Log

has

Ontology

uses

Fig. 8. Suggesting next actions

knowledge worker.
The more information is prepared by this preprocessing, the

bigger is the resulting learning problem. Consequently, it must
be carefully decided on how to enrich the provided raw data
for the learning process:

• By having domain knowledge available from the on-
tology, preprocessing may focus on concepts which are
related to each other.

• Temporal windows may be used to focus on happenings
that date back a specific amount of time and to abstract
from events having happened earlier.

3) Machine Learning: Automated learning from the deci-
sions of knowledge workers is realized by the supervised learn-
ing approach classification. Based on the classifiers learned
from the training data, new observations can be assigned
to the category that they belong to. Categories are in the
context of this framework equivalent to tasks, so that it can
provide recommendations for next actions. An observation
is equivalent to the state of the case execution for which
the knowledge worker requests a proposal and must in the
same way be preprocessed as the training samples to create a
matching set of attributes.

IV. DISCUSSION

We present the framework in the context of ACM, but
flexible business process management approaches can benefit
from the framework in general. In such systems, a fast way to
react to changing compliance requirements is needed, which
can be provided by the proposed ontology-based constraint
editor. Additionally, an automated support for deciding on next



actions can be beneficial when business users are not confined
to enacting predefined, flow-driven business processes.

To make tacit knowledge explicit in form of constraints,
it would be possible to extend the proposed framework by
constraint discovery. By supporting the automated discovery of
constraints, the framework would gain an additional feedback
loop. The main objective of this loop would be the capturing
of recurring behavior that is existent in a large quantity of
case instances but not yet available as explicit constraint.
Current constraint discovery research is predominantly focused
on discovering LTL-based temporal patterns [9]. Another
approach mines pattern-based organizational constraints for
the DPIL approach [21]. The integration of domain knowledge
stemming from an ontology is not yet considered in existing
approaches. Taxonomies and relations might be of great use
to improve constraint mining results and to make mined
constraints better understandable for business users.

Lakshmanan et al. propose a markov prediction model
for data-driven semi-structured business processes [22]. By
exploiting process mining techniques, the approach discovers
a classical process model to learn decisions for determined de-
cision points. If the recommendation approach of the proposed
framework can benefit from this additional preprocessing step
is uncertain since classical process mining tends to create
spaghetti models when analyzing enactments of unstructured
business processes, such as those often present in ACM.

V. CONCLUSION & FUTURE WORK

This paper proposes a framework that supports knowledge
worker to avoid non-compliance. An ontology-based constraint
editor allows knowledge workers to rapidly react to new
circumstances that require an adaption of the realization of
compliance requirements by enabling the creation of con-
straints in business terminology. Consequently, long main-
tenance cycles—usually involved with realizing compliance
requirements in an IT system—are avoided. Decisions of
knowledge workers, such as those related to compensating
a compliance violation, are being automatically learned to
provide support to knowledge workers that encounter a similar
situation.

There exist several opportunities for future research. Knowl-
edge workers might benefit from extending the framework
with automated constraint discovery. How to integrate the
process of discovery with the ontology and how to make
the discovered results usable by knowledge workers would
be an interesting direction. User studies on specific aspects
of the framework, such as the usability of the constraint
and ontology editor, could be used to further investigate the
practical applicability of the framework.

Acknowledgment: The research leading to these results has
received funding from the FFG project CACAO, no. 843461 and the
Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF),
Grant No. ICT12-001.

REFERENCES

[1] K. D. Swenson, Mastering the unpredictable: how adaptive case man-
agement will revolutionize the way that knowledge workers get things
done. Meghan-Kiffer Press, 2010.

[2] A. Elgammal, O. Turetken, W.-J. Heuvel, and M. Papazoglou, “For-
malizing and applying compliance patterns for business process com-
pliance,” Software & Systems Modeling, vol. 15, no. 1, pp. 119–146,
2014.

[3] J. Yu, T. P. Manh, J. Han, Y. Jin, Y. Han, and J. Wang, “Pattern based
property specification and verification for service composition,” in 7th
International Conference on Web Information Systems. Springer, 2006,
pp. 156–168.

[4] T. Tran, E. Weiss, C. Ruhsam, C. Czepa, H. Tran, and U. Zdun, “Embrac-
ing process compliance and flexibility through behavioral consistency
checking in acm: A repair service management case,” in AdaptiveCM’15,
ser. Business Process Management Workshops 2015, August 2015.

[5] M. Leitner, J. Mangler, and S. Rinderle-Ma, “Definition and enactment
of instance-spanning process constraints,” in International Conference
of Web Information System Engineering, ser. LNCS. Cyprus: Springer,
2012, pp. 652–658.

[6] M. Pesic and W. M. P. van der Aalst, “A declarative approach for flexible
business processes management,” in BPM Workshops. Springer, 2006,
pp. 169–180.

[7] A. Awad, A. Barnawi, A. Elgammal, R. Elshawi, A. Almalaise, and
S. Sakr, “Runtime detection of business process compliance violations:
An approach based on anti patterns,” in 30th Symposium on Applied
Computing, ser. SAC’15. ACM, 2015, pp. 1203–1210.

[8] T. Tran, E. Weiss, C. Ruhsam, C. Czepa, H. Tran, and U. Zdun,
“Enabling flexibility of business processes by compliance rules - a
case study from the insurance industry,” in BPM’15 (Industry Track)),
Innsbruck, Austria, September 2015., 2015, pp. 30–43.

[9] C. D. Ciccio and M. Mecella, “On the discovery of declarative control
flows for artful processes,” ACM Trans. Manage. Inf. Syst., vol. 5, no. 4,
pp. 24:1–24:37, Jan. 2015.

[10] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NUSMV: a new
Symbolic Model Verifier,” in 11th Conf.on Computer-Aided Verification
(CAV). Springer, July 1999, pp. 495–499.

[11] R. Eshuis, “Symbolic model checking of uml activity diagrams,” ACM
Trans. Softw. Eng. Methodol., vol. 15, no. 1, pp. 1–38, Jan. 2006.

[12] W. M. P. van der Aalst and M. Pesic, “DecSerFlow: Towards a truly
declarative service flow language,” in 3rd International Conference on
Web Services and Formal Methods (WS-FM). Springer, 2006, pp. 1–23.

[13] L. T. Ly, F. M. Maggi, M. Montali, S. Rinderle-Ma, and W. M. van der
Aalst, “Compliance monitoring in business processes: Functionalities,
application, and tool-support,” Information Systems, vol. 54, pp. 209 –
234, 2015.

[14] I. Barba, B. Weber, C. D. Valle, and A. Jimnez-Ramrez, “User recom-
mendations for the optimized execution of business processes,” Data
and Knowledge Engineering, vol. 86, no. 0, pp. 61 – 84, 2013.

[15] M. T. Gómez-López, L. Parody, R. M. Gasca, and S. Rinderle-Ma, OTM
2014 Conferences, Amantea, Italy, October 27-31. Springer, 2014, ch.
Prognosing the Compliance of Declarative Business Processes Using
Event Trace Robustness, pp. 327–344.

[16] T. Tran, C. Ruhsam, M. J. Pucher, M. Kobler, and J. Mendling, “Towards
a pattern recognition approach for transferring knowledge in acm,” in
AdaptiveCM’14, 2014.

[17] F. Fleuret, “Fast binary feature selection with conditional mutual infor-
mation,” J. Mach. Learn. Res., vol. 5, pp. 1531–1555, Dec. 2004.

[18] H. Blockeel, L. D. Raedt, and J. Ramon, “Top-down induction of
clustering trees,” ser. ICML ’98. Morgan Kaufmann Publishers Inc.,
1998, pp. 55–63.

[19] M. M. Akhlagh, S. C. Tan, and F. Khak, “Temporal data classification
and rule extraction using a probabilistic decision tree,” in ICCIS’12,
vol. 1, June 2012, pp. 346–351.

[20] Q. Shi, Y. Zhao, and M. Liu, “Towards learning segmented temporal
sequences: A decision tree approach,” in ICMLC’15, vol. 1, July 2015,
pp. 145–150.

[21] S. Schönig, C. Cabanillas, S. Jablonski, and J. Mendling, “Mining the
organisational perspective in agile business processes,” in BPMDS’15,
Stockholm, Sweden, June 8-9, 2015, pp. 37–52.

[22] G. Lakshmanan, D. Shamsi, Y. Doganata, M. Unuvar, and R. Khalaf,
“A markov prediction model for data-driven semi-structured business
processes,” Knowledge and Information Systems, pp. 1–30, 2013.


	Introduction & Motivation
	Framework Overview
	Recommendation Feedback Loop
	Enactment Feedback Loop
	Elicitation Feedback Loop

	Framework Components
	Ontology
	Constraint Elicitation & Constraint Authoring
	Case Enactment
	Constraint Enactment
	Recommendation of Actions
	Selection
	Preprocessing
	Machine Learning


	Discussion
	Conclusion & Future Work
	References

